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Purpose. To develop a rapid and reliable method for predicting the
pattern of aerosol particle deposition within the human lungs, using
artificial neural networks (ANNs).
Methods. Experimental data from the literature were used to train
multi-layer perceptron (MLP) networks to allow for prediction of
regional and total aerosol particle deposition patterns in human
lungs. These data covered particle sizes in the range 0.05–15 �m and
three different breathing patterns (ranging from “quiet” breathing to
breathing “under physical work conditions”). Three different MLPs
were trained, to provide separate predictions of aerosol particle de-
position in the laryngeal, bronchial, and alveolar regions. The total
deposition fraction for a given set of breathing conditions was com-
puted simply as the sum of the outputs produced from the corre-
sponding regional deposition MLPs.
Results. The ANNs developed are shown to give highly accurate
predictions for both regional and total aerosol deposition patterns for
all particle sizes and breathing conditions (with errors typically less
than 0.04%).
Conclusions. We conclude that the current set of ANNs can be used
to give good predictions of particle deposition from polydisperse
pharmaceutical aerosols generated from breath-actuated dry powder
inhalers, nebulizers, and metered dose inhalers with spacers.

KEY WORDS: artificial neural networks; aerosol deposition; human
lungs.

INTRODUCTION

For many years now, formulation scientists have been
concerned with the problem of how best to administer medi-
cal aerosols to maximize delivery of therapeutic agents to
infected regions of lung diseased patients (1). A variety of
different medical aerosols devices have been devised, includ-
ing nebulizers and dry-powder and metered dose inhalers (2–
4). However, the efficacy of these devices in pulmonary drug
delivery is still fairly unpredictable (5). It is generally the case
that a significant amount of administered drug does not reach
the target sites, but is instead deposited within the throat and
upper respiratory tract due to inertial impaction, sedimenta-
tion, and diffusion mechanisms.

For this reason (together with the interest in inhaled pol-
lutants), aerosol deposition in humans has been subjected to

many years of experimental and theoretical investigation.
While numerous reviews on in vivo experimental studies have
been reported (6), the most extensive data published to date
remain those given by Heyder et al. (7), who carried out a
systematic series of laboratory tests involving human volun-
teers, measuring the regional and total deposition fractions of
inhaled particles of defined sizes under well-defined breath-
ing conditions.

Over the years, both stochastic (Monte Carlo) and de-
terministic (computational fluid dynamics) models have been
developed in efforts to predict the patterns of aerosol particle
deposition in human lungs, and the human subject data of
Heyder et al. (7) have frequently been employed in validating
these models (8–9). In all such modeling, however, the calcu-
lations involved are highly complex and require significant
computing resource. Many also involve simplifying approxi-
mations such as a symmetric lung morphology (10) and so
have limited utility in making predictions for real systems.

In this study, which builds on our earlier work (11), we
have sought to develop a more reliable and more rapid
method for predicting the pattern of aerosol particle deposi-
tion within the human lungs, using artificial neural networks
(ANNs).

ANNs are now widely used in problem-solving, in many
diverse fields in science and engineering, among them pattern
recognition and classification, signal and image processing,
robot control, geography (12), financial forecasting (13), and
medical diagnosis (14). ANNs are also being successfully applied
to solve numerous problems in the pharmaceutical sciences
arena, including molecular graphics (15), quantitative structure-
activity relationships (16), pharmaceutical formulation (17),
pharmacokinetics (18), and drug dissolution profiles (19).

In general, ANNs try to replicate the way the human
brain processes information. Instead of being programmed by
a user in a traditional sense, ANNs are constructed so that
they can be “trained” to perform a particular task, most often
being required to relate the input and output variables of the
problem (20). Basically, the concept is very simple. An input
pattern is presented to the ANN and the corresponding net-
work output is computed. This output is then compared to the
desired output (or target) for that pattern and an error is
found. ANN training then proceeds in such a way as to mini-
mize the error between the calculated output and the desired
output.

In this research, experimental data from the human sub-
ject studies of Heyder et al. (7) were used to train neural
networks to allow for prediction of regional and total aerosol
deposition patterns in human lungs. The deposition data pre-
sented in their paper represent mean values for lung deposi-
tion fractions of monodisperse unit density aerosols for three
healthy subjects during nose and mouth breathing. In each
laboratory test, the subjects were asked to inspire at a pre-
scribed constant flow rate up to a given tidal volume, then
exhaled at a similar flow rate, with no irregular pauses be-
tween inspiratory and the expiratory periods of a breath. In
our work, as a preliminary step we have been concerned with
using only data from the oral breathing experiments for which
regional deposition fractions were measured under three dif-
ferent breathing patterns and with particle sizes in the range
0.05–15 �m.
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MATERIALS AND METHODS

The implementation and training of the neural networks
were carried out using a new Windows© based version of the
pulmonary drug delivery learning engine, PUDDLE (11). All

the ANNs developed use MLP network topology (20). In
general, MLP networks consist of one input layer, one or
more hidden layers and one output layer, with each layer
made up of a number of artificial neurons called nodes. The
nodes in adjacent layers are fully interconnected and each
connection’s “strength” is determined by its connection
weight.

At the start of training, the connection weights and bi-
ases are assigned random values typically in the range 0 to 1.
During training, changes in the connection weights and biases
are achieved by back propagation of error. In other words,
the calculated output of the network (O) is compared with the
desired output or target (T) to determine the associated error
for that input pattern. Using this error, a factor is computed
that is used to distribute the error at the output back to all the
nodes in the previous layers.

In this study, back-propagation of error is carried out
using batch training, that is, the necessary changes to connec-
tion weights and biases are calculated and updated after all
the input-target pairs in the training set (N�) have been tested.
Training proceeds until the number of iterations exceeds a
specified maximum, or until the mean square error on the
training set reaches a defined minimum. The mean square
error, � is calculated as:

Table I. Mean Square Error Achieved in Prediction of Laryngeal
Deposition of Aerosols, Given Different ANN Configurations

ANN configurationsa

Mean square error achieved

Training setb Test setb

3–2–1 0.0000872 0.000293
3–3–1 0.0000792 0.000270
3–4–1 0.0000666 0.000306
3–5–1c 0.0000505 0.000197
3–6–1 0.0000612 0.000281
3–7–1 0.0000645 0.000280
3–8–1 0.0000579 0.000290

a ANN configurations are presented as m–n–l, where m, n, and l are
respectively, the number of neurons in the input, hidden, and output
layers of the networks.

b Mean square errors achieved at point of minimum cross-validation
error.

c ANN configuration chosen as optimal.

Fig. 1. Comparison of predicted and measured deposition patterns of unit density spheres within the human respiratory tract
during oral breathing. Graphs in column A are for the breathing conditions: 1000 mL tidal volume, 8 s breathing cycle period,
and 250 mL/s inspiratory flow rate. Graphs in column B are for the breathing conditions: 500 mL tidal volume, 4 s breathing
cycle period, and 250 mL/s inspiratory flow rate. Graphs in column C are for the breathing conditions: 1500 mL tidal volume,
4 s breathing cycle period, and 750 mL/s inspiratory flow rate. In each column the upper, center and lower panels show data
for laryngeal, bronchial and alveolar deposition, respectively. The solid lines represent the experimental data from Heyder
et al. (1986). The open circles show the data used in the MLP training and the filled circles, the MLP predictions for
test/cross-validation data.
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� =
�
k=1

k=N�

�Tk − Ok�2

N�
(1)

where k � 1 to N� are the input-output patterns, N� is the
number of desired targets, Tk is the kth element of the target
in the training set, and Ok is the kth element of the computed
network output.

[For further details of the principles and basic method-
ology involved in the development of MLPs, refer to refer-
ences (11) and (20).]

When training MLPs, it is important to ensure that the
optimized weights reach the global minimum and do not be-
come trapped in one of the many local minima that make up
the error landscape. To avoid this situation, the time-invariant
noise algorithm (TINA) of Burton and Mpitsos was imple-
mented (21). TINA serves both to enhance the rate of learn-
ing and improve the final error achieved by the MLP net-
works. This algorithm is based on the principle of simulated
annealing (that is, injection of random noise during the train-
ing process), but is time independent. The level of injected
noise is dependent on the error associated with the network
output rather than the number of iterations that have passed.
At the outset of training, the level of injected noise is high
(due to a training error), but as training proceeds, the training
error gradually decreases and so does the level of injected
noise. As a result, the network converges towards the global
minimum. TINA is implemented simply by an additional term in
the adjustment of connection weights and biases calculated as:

�W = nr �Tk − Ok�2 (2)

where �W is the additional adjustment to connection weights
and biases, n is a constant determining the level of noise at the
start of training, and r is a number chosen randomly from a
uniform linear distribution in the range −1 to +1.

It should be emphasized here, however, that the attain-
ment of a global minimum error does not necessarily imply
that the trained network will be able to generalize from the
training patterns provided, that is, it will not guarantee accu-
rate predictions when the network is presented with previous
unseen data. The network could simply have memorized and
overfitted the training data. To avoid this problem, we have
implemented the technique of “split-sample” cross-validation
during training of the MLP networks. In short, the data used
are divided into three sets; a training set, a cross validation set
and a test set. The network weights and biases are updated
after all the input-output patterns in the training set have
been presented to the network, and the error associated with
the cross validation data set is monitored. Typically, the cross-
validation error will initially decrease as the network model
achieves a better fit to the data, but later, when the network
begins to overfit, the cross-validation error starts to rise. The
connection weights and biases for the best-trained network
are taken to be those existing when the minimum in cross-
validation error is achieved.

The data employed in training the networks were taken
from Heyder et al. (7). Particle diameter, breathing cycle pe-
riod, and mean inspiratory flow rate were provided to the
network as input (each normalized to lie within the range
0–1), and the target output consisted of the aerosol particle
regional deposition fractions. The network inputs were se-

Fig. 2. Mean square error as a function of number of iterations for the
3 MLP networks used. (a) Network I (laryngeal deposition). (b) Net-
work II (bronchial deposition). (c) Network III (alveolar deposition).
The solid and dashed lines are, respectively, the training error and
cross validation error. Arrows indicate positions of minimum cross
validation error.
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lected through a simple consideration of the known factors
influencing the site and extent of aerosol deposition, viz., the
sizes of the particles, their residence time within the airways,
and the velocity of the air in which they are borne along
within the airways (6). An MLP network consisting of three
input nodes, four hidden nodes, and one output node was
found adequate for predicting bronchial deposition, whereas
both laryngeal and alveolar deposition data necessitated the
use of a 3–5–1 configuration. These network configurations
were obtained after extensive experimentation with networks
of varying complexities (that is, varying number of hidden
neuron layers and varying number of hidden neurons per
layer), with the network momentum (�), learning rate (�),
and noise level (n) in each case adjusted manually to give
optimum training performance. The final set of network
configurations was chosen based on consideration of the
mean square errors achieved for the training, test, and cross-
validation data sets. Table I, for example, shows the case
for laryngeal deposition. Here, the mean square errors
achieved in ANN predictions are given as a function of the
number of neurons in a single hidden layer (varied from 2 to

8). It will be noted that for the final configuration chosen (3–5–
1), when the minimum in cross-validation error is achieved the
mean square errors for the training and test data sets are lower
than those achieved with any other network configuration.

For all three of the networks, 70% of the input data were
used for training, 10% for cross-validation and the remaining
20% for the test set. The three networks were trained to
provide predictions for laryngeal, bronchial, and alveolar de-
position fractions, respectively. The total deposition fraction
for a given set of breathing conditions was computed simply
as the sum of the outputs produced from the corresponding
regional deposition ANNs.

RESULTS AND DISCUSSION

All three aerosol particle deposition networks were
trained on a 700MHz PC equipped with 128Mb RAM; the
training in each case was completed in under 3 m. Figure 2
shows the mean square error achieved as a function of train-
ing iteration. It will be noted (as discussed before) that al-
though the errors associated with the networks’ predictions

Table II. Comparison of ANN Output and Associated Errors with Results Obtained Using Stochastic and
Deterministic Models

Condition 1b

Total deposition fractiona

Experimental
data

ANN
(% error)

Stochastic-1
(% error)

Stochastic-2
(% error)

Deterministic
(% error)Particle size (�m)

0.050 0.52 0.51 (−1.7) 0.55 (5.8) 0.55 (5.8) 0.64 (23.1)
0.100 0.34 0.39 (16.0) 0.42 (23.5) 0.42 (23.5) 0.41 (20.6)
0.200 0.21 0.25 (18.3) 0.22 (4.8) 0.22 (4.8) 0.25 (19.0)
0.400 0.18 0.16 (−11.6) 0.14 (−22.2) 0.14 (−22.2) 0.16 (−11.1)
0.700 0.18 0.18 (1.7) 0.23 (27.8) 0.23 (27.8) 0.16 (−11.1)
1.000 0.25 0.27 (7.8) 0.36 (44.0) 0.36 (44.0) 0.20 (−20.0)
2.000 0.53 0.55 (4.5) 0.52 (−1.9) 0.50 (−5.7) 0.48 (−9.4)
5.000 0.81 0.81 (0.3) 0.75 (−7.4) 0.73 (−9.9) 0.83 (2.5)

10.000 0.93 0.94 (0.7) 0.88 (−5.4) 0.92 (−1.1) 0.92 (−1.1)
Condition 2c

0.050 0.33 0.32 (−3.3) 0.34 (3.0) 0.34 (3.0) 0.43 (30.3)
0.100 0.21 0.25 (18.0) 0.19 (−9.5) 0.19 (−9.5) 0.25 (19.0)
0.200 0.13 0.17 (28.6) 0.12 (−7.7) 0.12 (−7.7) 0.14 (7.7)
0.400 0.11 0.12 (6.7) 0.08 (−27.3) 0.08 (−27.3) 0.09 (−18.2)
0.700 0.12 0.12 (3.5) 0.09 (−25.0) 0.09 (−25.0) 0.08 (−33.3)
1.000 0.15 0.16 (5.5) 0.13 (−13.3) 0.13 (−13.3) 0.10 (−33.3)
2.000 0.28 0.30 (6.3) 0.28 (0.0) 0.27 (−3.6) 0.24 (−14.3)
5.000 0.65 0.66 (2.1) 0.50 (−23.1) 0.49 (−24.6) 0.66 (1.5)

10.000 0.86 0.85 (−0.9) 0.73 (−15.1) 0.81 (−5.8) 0.85 (−1.2)
Condition 3d

0.050 0.45 0.44 (−2.0) 0.54 (20.0) 0.54 (20.0) 0.52 (15.6)
0.100 0.25 0.31 (24.8) 0.31 (24.0) 0.31 (24.0) 0.30 (20.0)
0.200 0.14 0.17 (20.0) 0.14 (0.0) 0.14 (0.0) 0.17 (21.4)
0.400 0.11 0.09 (−17.3) 0.12 (9.1) 0.12 (9.1) 0.11 (0.0)
0.700 0.12 0.10 (−14.9) 0.13 (8.3) 0.13 (8.3) 0.11 (−8.3)
1.000 0.15 0.16 (8.4) 0.22 (46.7) 0.23 (53.3) 0.13 (−13.3)
2.000 0.39 0.43 (11.0) 0.55 (41.0) 0.37 (−5.1) 0.32 (−17.9)
5.000 0.86 0.85 (−0.8) 0.77 (−10.5) 0.82 (−4.7) 0.82 (−4.7)

10.000 0.97 0.97 (0.0) 0.92 (−5.2) 0.98 (1.0) 0.96 (−1.0)

a Experimental data from Heyder et al. (7). Stochastic-1 and stochastic-2 results taken from Hofmann et al. (8)
(calculated using equations from refs. 22 and 6, respectively). The deterministic results are from Martonen et
al. (23).

b TV � 1000 mL, T � 4 s, and Q � 250 mL/s.
c TV � 500 mL, T � 4 s, and Q � 250 mL/s.
d TV � 1500 mL, T � 4 s, and Q � 750 mL/s.
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for the training set data decreased more or less continuously,
the corresponding errors for the predictions made for the
cross-validation data initially decreased and then increased.
Because the increasing errors in the cross-validation data pre-
dictions are associated with over-training of the neural net-
works, the weights and biases taken, as those of the best-
trained networks were those existing at the point when mini-
mum cross-validation errors were achieved. For laryngeal,
bronchial, and alveolar networks these minima were reached
after 50,000, 240,000, and 560,000 iterations, respectively (at
the points indicated by arrows in Fig. 2).

In Figure 1 we compare the predicted patterns of aerosol
particle deposition against those determined experimentally
by Heyder et al. (7). Column A shows the deposition patterns
resulting from “quiet breathing”, with a slow inspiration over
a relatively long time (tidal volume TV � 1000 mL, breathing
cycle period T � 8 s, mean inspiratory flow rate Q � 250 mL/s).
Column C shows the corresponding patterns arising for breath-
ing under “physical work conditions” (TV � 1500 mL, T � 4 s,
Q � 750 mL/s), and those in Column B are for “intermediate”
conditions (TV � 500 mL, T � 4 s, Q � 250 mL/s).

In all cases, and for all sizes of particles, it will be seen
that the MLP networks are able to follow closely and accu-
rately the changes in regional lung deposition fractions. The
mean errors associated with the networks’ predictions (calcu-
lated only over the “unseen” data) are 0.012%, 0.009%, and
0.035%, for the laryngeal, bronchial, and alveolar particle de-
position, respectively. The predictions made are significantly

better than those achieved using either stochastic or deter-
ministic models (see Table II) – even for the case of small
particle deposition under “physical work conditions” (where
the ANN predictions for total deposition are at their worst,
on average, ∼11%) (6,8,22–24).

Accepting then that the ANNs have been trained suc-
cessfully we take the further step of making predictions of the
regional and total deposition fractions of inhaled particles
following changes in breathing conditions. We first consider
the effects of changes in respiratory time and tidal volume
when inspiratory flow rate remains the same, and then con-
sider the effects of changes in inspiratory flow rate when
breathing cycle period is kept constant. The results obtained
in these predictions are depicted in Figs. 3, 4, and 5.

From Fig. 3, we see that at a given inspiratory flow rate,
the total lung deposition fraction increases with an increase in
respiratory time for all particles with sizes in the range 1–5
�m, a result which accords well with the experimental find-
ings reported by Kim (25). These changes primarily reflect
the increase in alveolar deposition (Fig. 3c) and are accounted
for by the fact that the residence time of the aerosols in the
lung is longer and so the particles have a greater likelihood of
being deposited through gravitational sedimentation. More-
over, since the flow rate here is kept constant, the increase in
breathing cycle period is tantamount to an increase in tidal
volume, with the consequence that this leads to the inhaled
particles penetrating more deeply into the lungs, and this in
turn gives greater opportunity for their deposition.

Fig. 3. Regional and total lung deposition fractions for three sizes of inhaled particles (diamonds 1 �m; squares 3 �m;
and triangles 5 �m) as a function of breathing cycle period, at a fixed value of inspiratory flow (Q � 250 mL/s). (a)
Laryngeal deposition fraction. (b) Bronchial deposition fraction. (c) Alveolar deposition fraction. (d) Total lung depo-
sition fraction. In (a)–(d) the filled symbols show the MLP predictions and in (d) the open symbols show the experi-
mental data taken from (25). Lines shown are intended only as a guide to the eye.
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Fig. 4. Total lung deposition fraction as a function of particle size for two different breathing
conditions, where the tidal volume, TV � 500 mL (solid line) or 750 mL (dashed line), in both
cases with inspiratory flow rate, Q � 250 mL/s. The lines show the MLP predictions and the
points plotted are the experimental data (for the case where TV � 500 mL) taken from ref. 6,
originally presented by Heyder et al. (7) and Schiller et al. (24).

Fig. 5. Regional and total lung deposition fractions for three sizes of inhaled particles (diamonds 1 �m; squares
3 �m; and triangles 5 �m) as a function of inspiratory flow rate, at a fixed value of respiratory time (T � 4
s). (a) Laryngeal deposition fraction. (b) Bronchial deposition fraction. (c) Alveolar deposition fraction. (d)
Total lung deposition fraction. In (a)– (d) the filled symbols show the MLP predictions and in (d) the open
symbols show the experimental data taken from (25). Lines shown are intended only as a guide to the eye.

Prediction of Aerosol Deposition in Human Lungs 1135



In Fig. 4 we show the total lung deposition fraction versus
aerosol particle diameter as TV increases with a given inspi-
ratory flow rate (250 mL/s). The U-shaped curve for the total
lung deposition fraction is seen to shift upwards as TV in-
creases (from 500 mL to 750 mL), but with the deposition
minimum always found for particles of ≈ 0.5 �m. Here too,
the network predictions for a given set of breathing condi-
tions compare favorably with the available experimental data
(6,7,24), and the shift in the curve caused on changing the
breathing conditions is just as reported by Kim (25). The fact
that the deposition fraction for 0.5 �m particles remains as a
minimum regardless of TV is explained by the fact that none
of the 3 mechanisms (inertial impaction, gravitational sedi-
mentation, and diffusion) acts strongly on these particles.
Larger particles (>0.5 �m) are greatly influenced by inertial
impaction and gravitational sedimentation, whilst smaller
particles (<0.5 �m) are deposited effectively by diffusion.

When the inspiratory flow rate is varied at a constant
respiratory time the predicted effects on regional and total
deposition fractions are as illustrated in Fig. 5. Once again the
network predictions are within 10% of the recorded experi-
mental data (25). The total lung deposition fraction (Fig. 5d)
increases with flow rate for particles of 3 �m in size and
above, whereas for particles of 1�m in diameter, the deposi-
tion fraction is independent of inspiratory flow rate. This can
be explained by the fact that the deposition of small particles
in the lungs is mainly governed by gravitational sedimentation
and diffusion and these mechanisms are independent of in-
spiration flow.

CONCLUSIONS

The work presented here has demonstrated that ANNs
can be successfully employed to predict regional and total
aerosol particle deposition patterns in human lungs, given
that there is sufficient data to train the networks. It is impor-
tant to note that the neural networks designed in this study
were trained on data for only three breathing conditions for
which regional and total deposition fractions are available (7).
The predictions for regional and total aerosol particle depo-
sition fractions are thus reliable only within the following
ranges: particle diameters 0.05 to 15 �m; breathing cycle pe-
riods 4 to 8 s; inspiratory flow rates 250 to 750 mL/s; tidal
volumes 500 to 1500 mL.

In terms of the development of such tools to aid in the
evaluation and design of pulmonary drug delivery systems,
however, these limitations are not considered serious. The
limits on breathing conditions span the whole of the relevant
range from “quiet breathing” through to “breathing under
physical work”, and the limits on particle sizes more than
cover the particle size ranges which are typical in polydisperse
medical aerosols, where the mass median aerodynamic diam-
eters are quoted to be 1–3 �m (25).

It must be noted, however, that the ANNs reported here
are appropriate only for passive breathing, and so are appli-
cable to pharmaceutical aerosols generated by certain devices
only (i.e., solid powders from breath-actuated DPIs, nebu-
lized droplets from nebulizers, and pressurized aerosols from
MDIs with spacers).
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